

ML12009 ML12011 MECL PLL Components Dual Modulus Prescaler

Legacy Device: Motorola MC12009, MC12011

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, respectively. A MECL-to-MTTL translator is provided to interface directly with the Motorola MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- ML12009 480 MHz (÷5/6), ML12011 550 MHz (÷8/9)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input Series Input RC Typ, 20 Ω and 4.0 pF
- VBB Reference Voltage
- 310 mW (Typ)

* When using a 5.0 V supply, apply 5.0 V to Pin 1 (VCCO), Pin 6 (MTTL VCC), Pin 16 (VCC), and ground Pin 8 (VEE). When using -5.2 V supply, ground Pin 1 (VCCO), Pin 6 (MTTL VCC), and Pin 16 (VCC) and apply -5.2 V to Pin 8 (VEE). If the translator is not required, Pin 6 may be left open to conserve DC power drain.

SO 16 = -5PPLASTIC PACKAGE CASE 751B P DIP 16 = EP PLASTIC PACKAGE **CASE 648** CROSS REFERENCE/ORDERING INFORMATION PACKAGE MOTOROLA LANSDALE P DIP 16 MC12009P ML12009EP SOIC 16 MC12009D ML12009-5P P DIP 16 MC12011P ML12011EP

Note: Lansdale lead free (**Pb**) product, as it becomes available, will be identified by a part number prefix change from **ML** to **MLE**.

MC12011D

SO 16W

ML12011-5P

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit							
(Ratings above which device life may be impaired)										
Power Supply Voltage (V _{CC} = 0)	V _{EE}	-8.0	Vdc							
Input Voltage (VCC = 0)	V _{in}	0 to V _{EE}	Vdc							
Output Source Current Continuous Surge	_0	< 50 < 100	mAdc							
Storage Temperature Range	T _{stg}	-65 to 175	°C							

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range ML12009, ML12011	T _A	-30 to 85	°C
DC Fan–Out (Note 1) (Gates and Flip–Flops)	n	70	_

NOTES: 1. AC fan-out is limited by desired system performance.

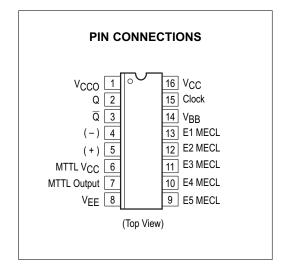


Figure 1. Logic Diagrams

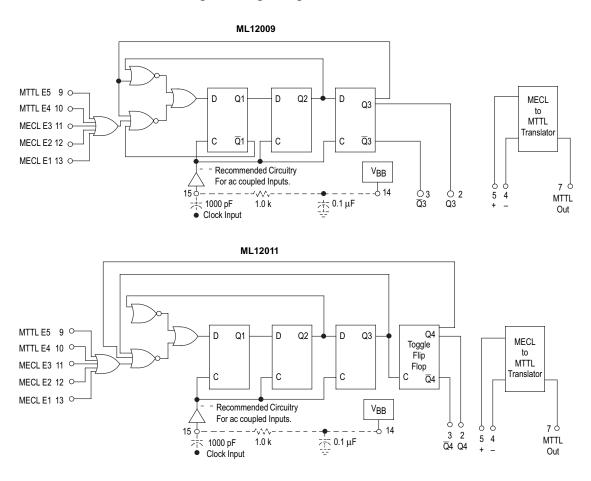


Figure 2. Typical Frequency Synthesizer Application

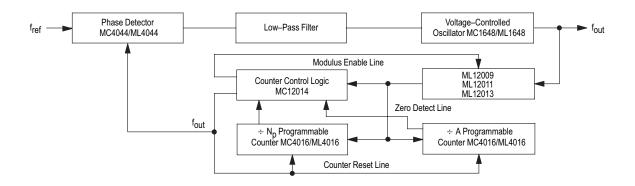


Figure 2b Generic block diagram showing prescaler connection to PLL Device

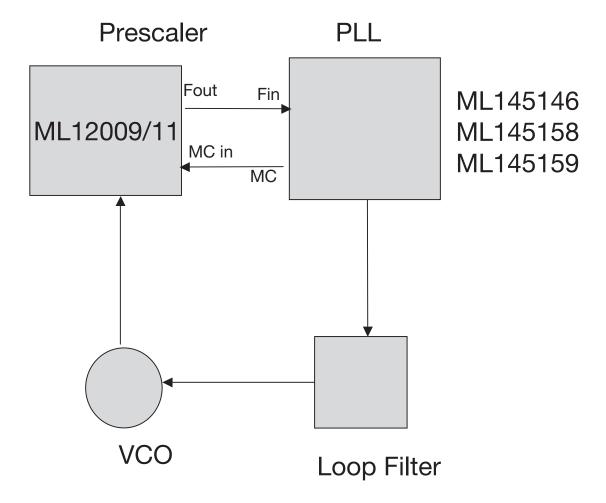
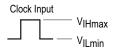



Figure 2b shows a generic block diagram of connecting a prescaler to a PLL device that supports dual modulus controls. Applicataion not AN535 describes using a two–modulus prescaler technique. By using prescaler higher frequencies can be achieved than by a single CMOS PLL device.

ELECTRICAL CHARACTERISTICS (Supply Voltage = -5.2 V, unless otherwise noted.)

			Test Limits						
		Pin Under	-30	0°C	25	°C	85	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _{CC1}	8	-88		-80		-80		mAdc
	I _{CC2}	6		5.2		5.2		5.2	mAdc
Input Current	l _{inH1}	15 11 12 13		375 375 375 375		250 250 250 250		250 250 250 250	μAdc
	l _{inH2}	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdc
	l _{inH3}	5	0.7	3.0	1.0	3.0	1.0	3.6	
	l _{inH4}	9 10		100 100		100 100		100 100	μAdc
Leakage Current	l _{inL1}	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc
	linL2	9 10	-1.6 -1.6		-1.6 -1.6		-1.6 -1.6		mAdc
Reference Voltage	V _{BB}	14			-1.360	-1.160			Vdc
Logic '1' Output Voltage	VOH1 (Note 1)	2 3	-1.100 -1.100	-0.890 -0.890	-1.000 -1.000	-0.810 -0.810	-0.930 -0.930	-0.700 -0.700	Vdc
	V _{OH2}	7	-2.8		-2.6		-2.4		
Logic '0' Output Voltage	VOL1 (Note 1)	2 3	-1.990 -1.990	-1.675 -1.675	-1.950 -1.950	-1.650 -1.650	-1.925 -1.925	-1.615 -1.615	Vdc
	V _{OL2}	7		-4.26		-4.40		-4.48	1
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	-1.120 -1.120		-1.020 -1.020		-0.950 -0.950		Vdc
Logic '0' Threshold Voltage	VOLA (Note 3)	2 3		-1.655 -1.655		-1.630 -1.630		-1.595 -1.595	Vdc
Short Circuit Current	los	7	-65	-20	-65	-20	-65	-20	mAdc

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

input is the waveform shown.

^{3.} In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

				TEST V	OLTAGE/CU	IRRENT VA	LUES		
					Vol	s			
	@ Test Temp	perature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IH}	VILH]
		-30°C	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7]
		25°C	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7]
		85°C	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7	1
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BELO	ow .]
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	VIH	VIL	Gnd
Power Supply Drain Current	I _{CC1}	8							1,16
	I _{CC2}	6	4	5					6
Input Current	linH1	15 11 12 13	15 11 12 13						1,16 1,16 1,16 1,16
	l _{inH2}	4 5	5 5	4 4					6 6
	l _{inH3}	5	4	5					6
	l _{inH4}	9 10					9 10		1,16 1,16
Leakage Current	l _{inL1}	15 11 12 13							1,16 1,16 1,16 1,16
	l _{inL2}	9 10						9 10	1,16 1,16
Reference Voltage	V _{BB}	14							1,16
Logic '1' Output Voltage	V _{OH1} (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16
	V _{OH2}	7	5	4					6
Logic '0' Output Voltage	V _{OL1} (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16
	V _{OL2}	7	4	5					6
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3			11,12,13 11,12,13				1,16 1,16
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			1,16 1,16
Short Circuit Current	los	7	5	4				7	6

input is the waveform shown.

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

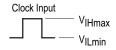
Clock Input v_{IHmax} V_{ILmin}

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

			TEST VOLTAGE/CURRENT VALUES							
				Volts			mA			
	@ Test Temp	perature	VIHT	VILT	VEE	ΙL	loL	ІОН		
		–30°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1	
		25°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1	
		85°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1	
		Pin	TE	ST VOLTAGI	E APPLIED	TO PINS LIS	STED BEL	ow	1	
Characteristic	Symbol	Under Test	V _{IHT}	V _{ILT}	VEE	ΙL	l _{OL}	Іон	Gnd	
Power Supply Drain Current	ICC1	8			8				1,16	
	I _{CC2}	6			8				6	
Input Current	linH1	15 11 12 13	9,10 9,10 9,10		8 8 8				1,16 1,16 1,16 1,16	
	l _{inH2}	4 5			8 8				6 6	
	linH3	5			8				6	
	linH4	9 10			8 8				1,16 1,16	
Leakage Current	linL1	15 11 12 13			8,15 8,11 8,12 8,13				1,16 1,16 1,16 1,16	
	l _{inL2}	9 10			8 8				1,16 1,16	
Reference Voltage	V _{BB}	14			8	14			1,16	
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			8 8				1,16 1,16	
	V _{OH2}	7			8			7	6	
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			8 8				1,16 1,16	
	V _{OL2}	7			8		7		6	
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	9,10 9,10		8 8				1,16 1,16	
Logic '0' Threshold Voltage	V _{OLA} (Note 2)	2 3		9,10 9,10	8 8				1,16 1,16	
Short Circuit Current	los	7			8				6	

Clock Input V_{IHmax} V_{ILmin}

input is the waveform shown.


^{3.} In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

ELECTRICAL CHARACTERISTICS (Supply Voltage = 5.0 V, unless otherwise noted.)

			Test Limits							
		Pin Under	-30	0°C	25	°C	85	°C		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	
Power Supply Drain Current	lCC1	8	-88		-80		-80		mAdc	
	l _{CC2}	6		5.2		5.2		5.2	mAdc	
Input Current	linH1	15 11 12 13		375 375 375 375		250 250 250 250		250 250 250 250	μAdc	
	l _{inH2}	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdc	
	linH3	5	0.7	3.0	1.0	3.0	1.0	3.6		
	l _{inH4}	9 10			100 100	100 100		100 100	μAdc	
Leakage Current	l _{inL1}	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc	
	l _{inL2}	9 10	−1.6 −1.6		−1.6 −1.6		−1.6 −1.6		mAdc	
Reference Voltage	V _{BB}	14			3.67	3.87			Vdc	
Logic '1' Output Voltage	V _{OH1} (Note 1)	2 3	3.900 3.900	4.110 4.110	4.000 4.000	4.190 4.190	4.070 4.070	4.300 4.300	Vdc	
	V _{OH2}	7	2.4		2.6		2.8			
Logic '0' Output Voltage	VOL1 (Note 1)	2 3	3.070 3.070	3.385 3.385	3.110 3.110	3.410 3.410	3.135 3.135	3.445 3.445	Vdc	
	V _{OL2}	7		0.94		0.80		0.72]	
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	3.880 3.880		3.980 3.980		4.050 4.050		Vdc	
Logic '0' Threshold Voltage	VOLA (Note 3)	2 3		3.405 3.405		3.430 3.430		3.465 3.465	Vdc	
Short Circuit Current	los	7	-65	-20	-65	-20	-65	-20	mAdc	

input is the waveform shown.

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

			TEST VOLTAGE/CURRENT VALUES							
					Volt	ts				
	@ Test Temp	perature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	VIH	V _{ILH}		
		-30°C	4.110	3.070	3.795	3.500	2.4	0.5		
		25°C	4.190	3.110	3.895	3.525	2.4	0.5	1	
		85°C	4.300	3.135	3.965	3.560	2.4	0.5	1	
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BEL	ow	1	
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IH}	V _{IL}	(V _{EE}) Gnd	
Power Supply Drain Current	I _{CC1}	8							8	
	I _{CC2}	6	4	5					8	
Input Current	linH1	15 11 12 13	15 11 12 13						8 8 8 8	
	l _{inH2}	4 5	5 5	4 4					8 8	
	l _{inH3}	5	4	5					8	
	linH4	9 10					9 10		8 8	
Leakage Current	linL1	15 11 12 13							8,15 8,11 8,12 8,13	
	linL2	9 10						9 10	8 8	
Reference Voltage	V _{BB}	14							8	
Logic '1' Output Voltage	VOH1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8	
	V _{OH2}	7	5	4					8	
Logic '0' Output Voltage	VOL1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8	
	V _{OL2}	7	4	5					8	
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3			11,12,13 11,12,13				8 8	
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			8 8	
Short Circuit Current	los	7	5	4				7	8	

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown. Clock Input
VIHmax
VILmin

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

		TEST VOLTAGE/CURRENT VALUES							
				Volts			mA		
	@ Test Temp	perature	V _{IHT}	VILT	Vcc	ΙL	loL	Іон]
		–30°C	2.0	0.8	5.0	-0.25	16	-0.40	1
		25°C	2.0	0.8	5.0	-0.25	16	-0.40]
		85°C	2.0	0.8	5.0	-0.25	16	-0.40	1
		Pin	TE	ST VOLTAGE	E APPLIED	TO PINS LIS	STED BEL	ow	1
Characteristic	Symbol	Under Test	V _{IHT}	V _{ILT}	V _{CC}	ΙL	loL	ІОН	(V _{EE}) Gnd
Power Supply Drain Current	ICC1	8			1,16				8
	I _{CC2}	6			6				8
Input Current	linH1	15 11 12 13	9,10 9,10 9,10		1,16 1,16 1,16 1,16				8 8 8
	linH2	4 5			6 6				8 8
	l _{inH3}	5			6				8
	linH4	9 10			1,16 1,16				8 8
Leakage Current	linL1	15 11 12 13			1,16 1,16 1,16 1,16				8,15 8,11 8,12 8,13
	l _{inL2}	9 10			1,16 1,16				8 8
Reference Voltage	V _{BB}	14			1,16	14			8
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			1,16 1,16				8 8
	V _{OH2}	7			6			7	8
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			1,16 1,16				8 8
	V _{OL2}	7			6		7		8
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	9,10 9,10		1,16 1,16				8 8
Logic '0' Threshold Voltage	VOLA (Note 3)	2 3		9,10 9,10	1,16 1,16				8 8
Short Circuit Current	los	7			6				8

Clock Input
VIHmax
VILmin

In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

^{3.} In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

SWITCHING CHARACTERISTICS

		Pin			ML	12509, I	ML1251	1, ML12	513					TEST VC	LTAGES/	WAVEFOR	RMS APPLIE	D TO PIN	S LISTED I	BELOW:
		Under		-30°C			25°C			85°C			Pulse	Pulse	Pulse	VIHmin	V _{ILmin}	V _F	VEE	Vcc
Characteristic	Symbol	Test	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Gen.1	Gen.2	Gen.3	†	†	-3.0 V	-3.0 V	+2.0
Propagation Delay (See Figures 3 and 5)	t _{15+ 2+} t _{15+ 2-} t _{5+ 7+} t _{5- 7-}	2 2 7 7	_ _ _		8.1 7.5 8.4 6.5			8.1 7.5 8.1 6.5		1111	8.9 8.2 8.9 7.1	ns 	15 15 A A	_ _ _ _	_ _ _		11,12,13 11,12,13 — —	9,10 9,10 —	8 8 8	1,6,16 1,6,16 1,6,16 1,6,16
Setup Time (See Figures 4 and 5)	t _{setup1} t _{setup2}	11 9	5.0 5.0	_	_	5.0 5.0	_	_	5.0 5.0	_	_	ns ns	15 15	_	-	_	* 11,12,13	9,10	8 8	1,6,16 1,6,16
Release Time (See Figures 4 and 5)	t _{rel1} t _{rel2}	11 9	5.0 5.0	_	_	5.0 5.0	_	_	5.0 5.0		_	ns ns	15 15	_	-	_	* 11,12,13	9.10	8 8	1,6,16 1,6,16
Toggle Frequency (See Figure 6) ML12509: 5/6 ML12511: 8/9	f _{max}	2	440 500	_	_	480 550	_	_	440 500		_	MHz	=	=	=	11 11		_	8 8	16 16

^{*}Test inputs sequentially, with Pulse Generator 2 or 3 as indicated connected to input under test, and the voltage indicated applied to the other input(s) of the same type (i.e., MECL or MTTL).

	–30°C	25°C	85°C	
†V _{IHmin}	1.03	1.115	1.20	Vdc
†V _{ILmin}	0.175	0.200	0.235	Vdc

Figure 3. AC Voltage Waveforms

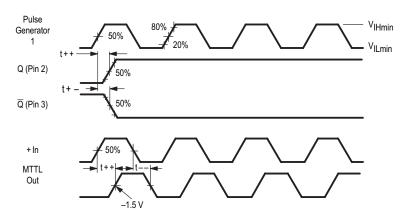
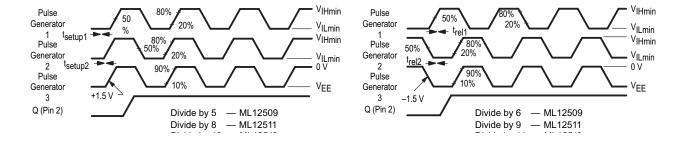



Figure 4. Setup and Release Time Waveforms

 \bigcirc V_{in} O Vout (Scope Channel B) V_{CC} = 2.0 V₹ 50 \circ v_{out} $0.1\,\mu F$ 6 Pulse Generator ≥ 100 #1 13 🔾 E1 Q E2 12 0 11 0-E3 Pulse 10 0-E4 \circ V_{out} Generator #2 E5 9 0-Q $\circ^{V_{in}}$ С 15 🔾 14 0- V_{BB} ≶950 ≥ 1950 MECL Pulse Generator 🕞 to MTTL #3 ≥ 50 Translator **\rightarrow** 8 $0.1 \, \mu F$ 卞∪T $^{\circ}$ V_{EE} = -3.0 V (Scope Channel A) MC10109 or equiv. A O-

Figure 5. AC Test Circuit

All Pulse Generators are EH 137 or equiv.

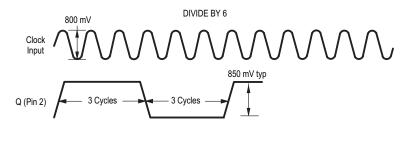
Pulse Generators 1 and 2: PRF = 10 MHz PW = 50% Duty Cycle $t + = t - = 2.0 \pm 0.2$ ns

Pulse Generator 3: PRF = 2.0 MHz PW = 50% Duty Cycle $t + = t - = 5.0 \pm 0.5$ ns All resistors are +1%.

50

All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

The 1950 Ω resistor at Pin 7 and the scope termination impedance constitute a 40:1 attenuator probe. C_T = 15 pF = total parasitic capacitance which includes probe, wiring, and load capacitance.


 $V_{EE} = -3.0 V$

Unused output connected to a 50 Ω resistor to ground.

♀ V_{CC} = 2.0 V to Scope $5.0\,\mu F$ 13 E1 12 Q VEE O -O-11 E2 E3 10 E4 E5 $\overline{\mathsf{Q}}$ 0.1 μF 15 1.0 k 14 V_{BB} 0.1 μF \$ \$ 0.1 μF V_{EE} = -3.0 V

Figure 6. Maximum Frequency Test Circuit

Unused output connected to a 50 Ω resistor to ground

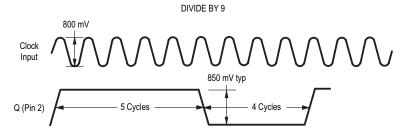
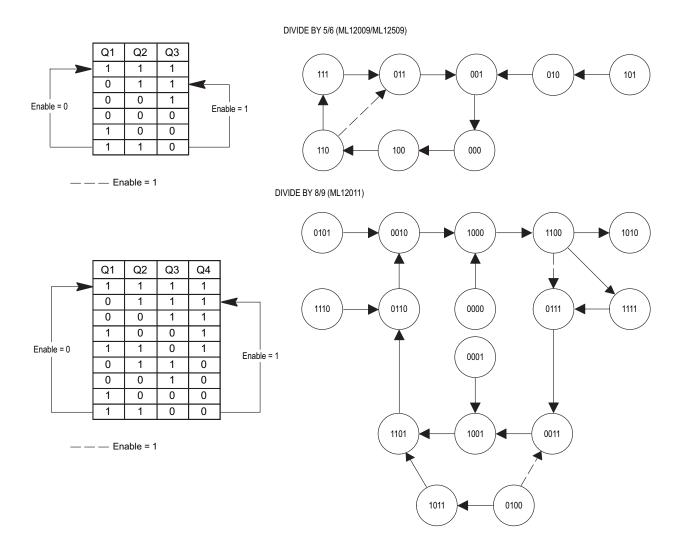
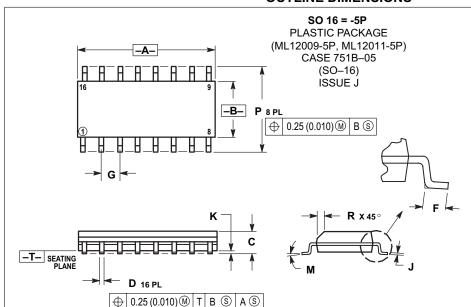



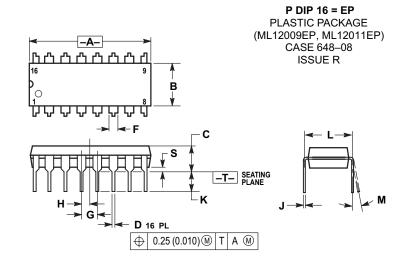
Figure 7. State Diagram


APPLICATIONS INFORMATION

The primary application of these devices is as a high–speed variable modulus prescaler in the divide by N section of a phase–locked loop synthesizer used as the local oscillator of two–way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance.

In their basic form, these devices will divide by 5/6 or 8/9. Division by 5, or 8 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, or 9 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained.


OUTLINE DIMENSIONS

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES					
DIM	MIN	MAX	MIN	MAX				
Α	9.80	10.00	0.386	0.393				
В	3.80	4.00	0.150	0.157				
С	1.35	1.75	0.054	0.068				
D	0.35	0.49	0.014	0.019				
F	0.40	1.25	0.016	0.049				
G	1.27	BSC	0.050	BSC				
J	0.19	0.25	0.008	0.009				
K	0.10	0.25	0.004	0.009				
М	0°	7°	0°	7°				
Р	5.80	6.20	0.229	0.244				
R	0.25	0.50	0.010	0.019				

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01
ு	0.020	0.040	0.01	1.01

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.